Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38611195

RESUMO

Biobased plastics provide a sustainable alternative to conventional food packaging materials, thereby reducing the environmental impact. The present study investigated the effectiveness of chitosan with varying levels of Moringa oleifera seed powder (MOSP) and tannic acid (TA). Chitosan (CS) biocomposite films with tannic acid acted as a cross-linker, and Moringa oleifera seed powder served as reinforcement. To enhance food packaging and film performance, Moringa oleifera seed powder was introduced at various loadings of 1.0, 3.0, 5.0, and 10.0 wt.%. Fourier-transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy analyses were performed to study the structure and morphology of the CS/TA/MOSP films. The scanning electron microscopy results confirmed that chitosan/TA with 10.0 wt.% of MOSP produced a lightly miscible droplet/matrix structure. Furthermore, mechanical properties, swelling, water solubility, optical barrier, and water contact angle properties of the film were also calculated. With increasing Moringa oleifera seed powder contents, the biocomposite films' antimicrobial and antifungal activity increased at the 10.0 wt.% MOSP level; all of the observed bacteria [Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), Aspergillus niger (A. niger), and Candida albicans (C. albicans)] had a notably increased percentage of growth. The film, with 10.0 wt.% MOSP content, effectively preserves strawberries' freshness, making it an ideal food packaging material.

2.
Molecules ; 29(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38611744

RESUMO

The green synthesis of zinc oxide nanoparticles (ZnO NPs) using plants has grown in significance in recent years. ZnO NPs were synthesized in this work via a chemical precipitation method with Jasminum sambac (JS) leaf extract serving as a capping agent. These NPs were characterized using UV-vis spectroscopy, FT-IR, XRD, SEM, TEM, TGA, and DTA. The results from UV-vis and FT-IR confirmed the band gap energies (3.37 eV and 3.50 eV) and the presence of the following functional groups: CN, OH, C=O, and NH. A spherical structure and an average grain size of 26 nm were confirmed via XRD. The size and surface morphology of the ZnO NPs were confirmed through the use of SEM analysis. According to the TEM images, the ZnO NPs had an average mean size of 26 nm and were spherical in shape. The TGA curve indicated that the weight loss starts at 100 °C, rising to 900 °C, as a result of the evaporation of water molecules. An exothermic peak was seen during the DTA analysis at 480 °C. Effective antibacterial activity was found at 7.32 ± 0.44 mm in Gram-positive bacteria (S. aureus) and at 15.54 ± 0.031 mm in Gram-negative (E. coli) bacteria against the ZnO NPs. Antispasmodic activity: the 0.3 mL/mL sample solution demonstrated significant reductions in stimulant effects induced by histamine (at a concentration of 1 µg/mL) by (78.19%), acetylcholine (at a concentration of 1 µM) by (67.57%), and nicotine (at a concentration of 2 µg/mL) by (84.35%). The antipyretic activity was identified using the specific Shodhan vidhi method, and their anti-inflammatory properties were effectively evaluated with a denaturation test. A 0.3 mL/mL sample solution demonstrated significant reductions in stimulant effects induced by histamine (at a concentration of 1 µg/mL) by 78.19%, acetylcholine (at a concentration of 1 µM) by 67.57%, and nicotine (at a concentration of 2 µg/mL) by 84.35%. These results underscore the sample solution's potential as an effective therapeutic agent, showcasing its notable antispasmodic activity. Among the administered doses, the 150 mg/kg sample dose exhibited the most potent antipyretic effects. The anti-inflammatory activity of the synthesized NPs showed a remarkable inhibition percentage of (97.14 ± 0.005) at higher concentrations (250 µg/mL). Furthermore, a cytotoxic effect was noted when the biologically synthesized ZnO NPs were introduced to treated cells.


Assuntos
Antipiréticos , Jasminum , Nanopartículas , Óxido de Zinco , Óxido de Zinco/farmacologia , Parassimpatolíticos , Acetilcolina , Escherichia coli , Histamina , Nicotina , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus , Anti-Inflamatórios/farmacologia , Antibacterianos/farmacologia , Extratos Vegetais/farmacologia
3.
Polymers (Basel) ; 16(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38543380

RESUMO

The structural and electro-thermophysical characteristics of organosilicon elastomers modified with multilayer carbon nanotubes (MWCNTs) synthesized on Co-Mo/Al2O3-MgO and metallic (Cu or Ni) microparticles have been studied. The structures were analyzed with scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, and energy-dispersive X-ray spectroscopy (EDX). The main focus of this study was the influence of metallic dispersed fillers on the resistance of a modified elastomer with Cu and Ni to the degradation of electrophysical parameters under the action of applied electrical voltage. The distribution of the temperature field on the surface of a modified polymer composite with metallic micro-dimensional structures has been recorded. The collected data demonstrate the possibility of controlling the degradation caused by electrical voltage. It has been found that repeated on/off turns of the elastomer with an MWCNTs on 50 and 100 cycles leads to a deterioration in the properties of the conductive elastomer from the available power of 1.1 kW/m2 (-40 °C) and, as a consequence, a decrease in the power to 0.3 kW/m2 (-40 °C) after 100 on/off cycles. At the same time, the Ni additive allows increasing the power by 1.4 kW/m2 (-40 °C) and reducing the intensity of the degradation of the conductive structures (after 100 on/off cycles up to 1.2 kW/m2 (-40 °C). When Ni is replaced by Cu, the power of the modified composite in the heating mode increases to 1.6 kW/m2 (-40 °C) and, at the same time, the degradation of the conductive structures in the composite decreases in the mode of cyclic offensives (50 and 100 cycles) (1.5 kW/m2 (-40 °C)). It was found that the best result in terms of heat removal is typical for an elastomer sample with an MWCNTs and Cu (temperature reaches 93.9 °C), which indicates an intensification of the heat removal from the most overheated places of the composite structure. At the same time, the maximum temperature for the Ni additives reaches 86.7 °C. A sample without the addition of a micro-sized metal is characterized by the local unevenness of the temperature field distribution, which causes undesirable internal overheating and destruction of the current-conducting structures based on the MWCNTs. The maximum temperature at the same time reaches a value of 49.8 °C. The conducted studies of the distribution of the micro-sizes of Ni and Cu show that Cu, due to its larger particles, improves internal heat exchange and intensifies heat release to the surface of the heater sample, which improves the temperature regime of the MWCNTs and, accordingly, increases resistance to electrophysical degradation.

4.
Heliyon ; 9(12): e23105, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38149182

RESUMO

The present work focuses on the structural, morphological, electrical characteristics, and antibacterial activity of mesoporous silicon (PS) against S. aureus and E. coli. We depict the structural and antimicrobial activity of PS as a result of different etching times (10.0, 20.0, 30.0, 40.0, 50.0, and 60.0 min) with a current density of 100 mA/cm2. The structural and morphological characteristics of synthesized PS have been examined with Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM). FTIR spectra have been used to confirmed the Si-O, Si-O-Si bond and the adsorption on the surface of PS nanoparticles. The formation of pores on the c-Si wafer results in an analysis of a photoluminescence (PL) band at 712 nm, which changes with etching time in a process similar to current density. The correlation exist among etching times and the ideality factor (η) and barrier height (фb). Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria showed enhanced antimicrobial activity against the PS nanoparticles. The synthesized of PS has been shown with good electrical and antimicrobial activities.

5.
Sci Rep ; 13(1): 18838, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914791

RESUMO

The green methodologies of nanoparticles with plant extracts have received an increase of interest. Copper oxide nanoparticles (CuO NPs) have been utilized in a many of applications in the last few decades. The current study presents the synthesis of CuO NPs with aqueous extract of Morinda citrifolia as a stabilizing agent. The leaf extract of Morinda citrifolia was mixed with a solution of copper sulphate (CuSO4·5H2O) and sodium hydroxide as a catalyst. UV-visible spectroscopy, FTIR, XRD, SEM, TEM, and EDAX analysis were performed to study the synthesized CuO NPs. Particle size distribution of the synthesized CuO NPs have been measured with dynamic light scattering. The CuO NPs synthesized were highly stable, sphere-like, and have size of particles from 20 to 50 nm. Furthermore, as-formed CuO NPs shown strong antibacterial activity against the Gram-positive bacteria (Bacillus subtilis, and Staphylococcus aureus), and Gram-negative bacteria (Escherichia coli). CuO NPs revealed a similar trend was analysed for antifungal activity. The zone of inhibition for the fungi evaluated for Aspergillus flavus (13.0 ± 1.1), Aspergillus niger (14.3 ± 0.7), and Penicillium frequentans (16.8 ± 1.4). According to the results of this investigation, green synthesized CuO NPs with Morinda citrifolia leaf extract may be used in biomedicine as a replacement agent for biological applications.


Assuntos
Nanopartículas Metálicas , Morinda , Nanopartículas , Antifúngicos/farmacologia , Cobre/química , Morinda/química , Nanopartículas Metálicas/química , Antibacterianos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Óxidos , Testes de Sensibilidade Microbiana , Espectroscopia de Infravermelho com Transformada de Fourier
6.
Plants (Basel) ; 12(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38005713

RESUMO

Rising waste construction, agricultural actions, and manufacturing sewages all contribute to heavy metal accumulation in water resources. Humans consume heavy metals-contaminated substances to make sustenance, which equally ends up in the food circle. Cleaning of these vital properties, along with the prevention of new pollution, has long been required to evade negative strength consequences. Most wastewater treatment techniques are widely acknowledged to be costly and out of the grasp of governments and small pollution mitigation businesses. Utilizing hyper-accumulator plants that are extremely resilient to heavy metals in the environment/soil, phytoremediation is a practical and promising method for eliminating heavy metals from contaminated environments. This method extracts, degrades, or detoxifies harmful metals using green plants. The three phytoremediation techniques of phytostabilization, phytoextraction, and phytovolatilization have been used extensively for soil remediation. Regarding their ability to be used on a wide scale, conventional phytoremediation methods have significant limitations. Hence, biotechnological attempts to change plants for heavy metal phytoremediation methods are extensively investigated in order to increase plant effectiveness and possible use of improved phytoremediation approaches in the country of India. This review focuses on the advances and significance of phytoremediation accompanied by the removal of various harmful heavy metal contaminants. Similarly, sources, heavy metals status in India, impacts on nature and human health, and variables influencing the phytoremediation of heavy metals have all been covered.

7.
Polymers (Basel) ; 15(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37896380

RESUMO

N-butyl-N-methyl-1-phenylpyrrole[1,2-a] pyrazine-3-carboxamide (GML-3) is a potential candidate for combination drug therapy due to its anxiolytic and antidepressant activity. The anxiolytic activity of GML-3 is comparable to diazepam. The antidepressant activity of GML-3 is comparable to amitriptyline. GML-3 is an 18 kDa mitochondrial translocator protein (TSPO) ligand and is devoid of most of the side effects of diazepam, which makes the research on the creation of drugs based on it promising. However, its low water solubility and tendency to agglomerate prevented its release. This research aimed to study the effect of dry grinding, the rapid expansion of a supercritical solution (RESS), and the eutectic mixture (composite) of GML-3 with polyvinylpyrrolidone (PVP) on the particle size, dissolution rate, and lattice retention of GML-3. The use of supercritical CO2 in the RESS method was promising in terms of particle size reduction, resulting in a reduction in the particle size of GML-3 to 20-40 nm with a 430-fold increase in dissolution rate. However, in addition to particle size reduction after RESS, GML-3 began to show signs of a polymorphism phenomenon, which was also studied in this article. It was found that coarse grinding reduced particle size by a factor of 2 but did not significantly affect solubility or crystal structure. Co-milling with the polymer made it possible to level the effect of the appearance of a residual electrostatic charge on the particles, as in the case of grinding, and the increased solubility in the resulting mechanical mixtures of GML-3 with the polymer may also indicate the dissolving properties of polymers (an increase in 400-800 times). The best result in terms of GML-3 solubility was demonstrated by the resulting GML-3:PVP composite at a ratio of 1:4, which made it possible to achieve a solubility of about 80% active pharmaceutical ingredient (API) within an hour with an increase in the dissolution rate by 1600 times. Thus, the creation of composites is the most effective method for improving the solubility of GML-3, superior to micronization.

8.
Nanomaterials (Basel) ; 13(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37686956

RESUMO

Applications of DNA-containing nanomaterials (DNA-NMs) in science and technology are currently attracting increasing attention in the fields of medicine, environment, engineering, etc. Such objects have become important for various branches of science and industries due to their outstanding characteristics such as small size, high controllability, clustering actions, and strong permeability. For these reasons, DNA-NMs deserve a review with respect to their recent advancements. On the other hand, precise cluster control, targeted drug distribution in vivo, and cellular micro-nano operation remain as problems. This review summarizes the recent progress in DNA-NMs and their crossover and integration into multiple disciplines (including in vivo/in vitro, microcircles excisions, and plasmid oligomers). We hope that this review will motivate relevant practitioners to generate new research perspectives and boost the advancement of nanomanipulation.

9.
Biomedicines ; 11(8)2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37626644

RESUMO

We recently reported that the restoration of cervical vertebral arterial blood flow access (measured as systolic peak (PS)) to the rhomboid fossa leads to the recovery of the HbA1c level in the case of patients with a pre-Diabetes Mellitus (pre-DM) condition. The theory of centralized aerobic-anaerobic energy balance compensation (TCAAEBC) provides a successful theoretical explanation for this observation. It considers the human body as a dissipative structure. Reported connections between arterial hypertension (AHT) and the level of HbA1c are linked through OABFRH. According to the TCAAEBC, this delivers incorrect information about blood oxygen availability to the cerebellum. The restoration of PS normalizes AHT in 5-6 weeks and HbA1c in 12-13 weeks. In the current study, we demonstrate the model which fits the obtained experimental data. According to the model, pathways of onset and recovery from pre-DM are different. The consequence of these differences is discussed. The great significance of the TCAAEBC for medical practice forces the creation of an appropriate mathematical model, but the required adjustment of the model needs experimental data which can only be obtained from an animal model(s). The essential part of this study is devoted to the analysis of the advantages and disadvantages of widely available common mammalian models for TCAAEBC cases.

10.
Int J Mol Sci ; 24(15)2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37569589

RESUMO

This work aimed to develop and characterize a water-soluble, high-release active pharmaceutical ingredient (API) composite based on the practically water-insoluble API N-butyl-N-methyl-1-phenylpyrrolo[1,2-a]pyrazine-3-carboxamide (GML-3), a substance with antidepressant and anxiolytic action. This allows to ensure the bioavailability of the medicinal product of combined action. Composites obtained by the method of creating amorphous solid dispersions, where polyvinylpyrrolidone (PVP) or Soluplus® was used as a polymer, were studied for crystallinity, stability and the release of API from the composite into purified water. The resulting differential scanning calorimetry (DSC), powder X-ray diffractometry (PXRD), and dissolution test data indicate that the resulting composites are amorphous at 1:15 API: polymer ratios for PVP and 1:5 for Soluplus®, which ensures the solubility of GML-3 in purified water and maintaining the supercritical state in solution.


Assuntos
Polímeros , Povidona , Polímeros/química , Solubilidade , Povidona/química , Água , Pirazinas , Varredura Diferencial de Calorimetria , Difração de Raios X
11.
Polymers (Basel) ; 15(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37177186

RESUMO

Due to the current environmental situation, biopolymers are replacing the usual synthetic polymers, and special attention is being paid to poly-3-hydroxybutyrate (PHB), which is a biodegradable polymer of natural origin. In this paper, the rate of biodegradation of films and fibers based on PHB was compared. The influence of exposure to soil on the structure and properties of materials was evaluated using methods of mechanical analysis, the DSC method and FTIR spectroscopy. The results showed rapid decomposition of the fibrous material and also showed how the surface of the material affects the rate of biodegradation and the mechanical properties of the material. It was found that maximum strength decreased by 91% in the fibrous material and by 49% in the film. Additionally, the DSC method showed that the crystallinity of the fiber after exposure to the soil decreased. It was established that the rate of degradation is influenced by different factors, including the surface area of the material and its susceptibility to soil microorganisms. The results obtained are of great importance for planning the structure of features in the manufacture of biopolymer consumer products in areas such as medicine, packaging, filters, protective layers and coatings, etc. Therefore, an understanding of the biodegradation mechanisms of PHB could lead to the development of effective medical devices, packaging materials and different objects with a short working lifespan.

12.
Polymers (Basel) ; 15(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36850142

RESUMO

A DNA structure, known as triple-stranded DNA, is made up of three oligonucleotide chains that wind around one another to form a triple helix (TFO). Hoogsteen base pairing describes how triple-stranded DNA may be built at certain conditions by the attachment of the third strand to an RNA, PNA, or DNA, which might all be employed as oligonucleotide chains. In each of these situations, the oligonucleotides can be employed as an anchor, in conjunction with a specific bioactive chemical, or as a messenger that enables switching between transcription and replication through the triplex-forming zone. These data are also considered since various illnesses have been linked to the expansion of triplex-prone sequences. In light of metabolic acidosis and associated symptoms, some consideration is given to the impact of several low-molecular-weight compounds, including pH on triplex production in vivo. The review is focused on the development of biomedical oligonucleotides with triplexes.

13.
Polymers (Basel) ; 15(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36616598

RESUMO

The development of reliable and effective functional materials that can be used in various technological fields and environmental conditions is one of the goals of modern nanotechnology. Heating elements' manufacturing requires understanding the laws of heat transfer under conditions of different supply voltages, as this expands the possibilities of such materials' application. Elastomers based on silicon-organic compounds and polyurethane modified with multi-walled carbon nanotubes (MWCNTs) were studied at various concentrations of Ni/MgO or Co-Mo/MgO and voltages (220, 250, and 300 V). It was found that an increase in voltage from 220 to 300 V leads to an initial increase in specific power on one-third followed by a subsequent decrease in a specific power when switched on again to 220 V (for -40 °C) of up to ~44%. In turn, for a polyurethane matrix, an increase in voltage to 300 V leads to an initial peak power value of ~15% and a decrease in power when switched on again by 220 V (for -40 °C) to ~36% (Ni/MgO -MWCNT). The conducted studies have shown that the use of a polyurethane matrix reduces power degradation (associated with voltage surges above 220 V) by 2.59% for Ni/MgO-based MWCNT and by 10.42% for Co-Mo/MgO. This is due to the better heat resistance of polyurethane and the structural features of the polymer and the MWCNT. The current studies allow us to take the next step in the development of functional materials for electric heating and demonstrate the safety of using heaters at a higher voltage of up to 300 V, which does not lead to their ignition, but only causes changes in electrophysical parameters.

15.
Pharmaceutics ; 14(12)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36559272

RESUMO

The combination of targeted transport and improvement of the release profile of the active pharmaceutical ingredient (API) is a current trend in the development of oral medicinal products (MP). A well-known way to implement this concept is to obtain floating gastroretentive delivery systems that provide a long stay of the dosage form (DF) on the surface of the stomach contents. The nomenclature of excipients (Es) of a polymeric nature used in the technology of obtaining floating drug delivery systems (FDDS) is discussed. Based on the data presented in research papers, the most widely used groups of polymers, their properties, and their purpose in various technological approaches to achieving buoyancy have been determined. In addition, ways to modify the release of APIs in these systems and the Es used for this are described. The current trends in the use of polymers in the technology of floating dosage forms (FDF) and generalized conclusions about the prospects of this direction are outlined.

16.
Polymers (Basel) ; 14(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36501681

RESUMO

Poly (vinylidene fluoride) membranes were prepared by freeze-casting. The effects of PVDF concentration, and freezing temperature on the morphology, crystallization, and performance of prepared membranes were examined. Polymer concentration was varied from 10 to 25 wt%. The freezing temperature was varied from -5 to -25 °C. Dimethyl sulfoxide (DMSO) and distilled water were used as solvents and non-solvents, respectively. The first step of this study was devoted to estimating the optimal concentration of PVDF solution in DMSO. Membranes prepared at different ratios were characterized using physical and mechanical characteristics and porosity. The second step was to optimize the time required for the production of the membranes. In the third step, it was shown that the freezing temperature had a remarkable effect on the morphology of the membranes: as the temperature decreases, there is a transition from spherulite structures to interconnected pores. It was shown that the diversity in the pore pattern for PVDF affects remarkably the water permeability through the polymer membrane. During the monitoring of the spread of crystallized areas during the formation of the membrane, it was found that the crystallization of the solvent begins at localized points of the microscale, further crystallized areas spread radially or unevenly along the surface of the solution, forming contact borders, which can lead to changes in the properties of the membrane in its area.

17.
Polymers (Basel) ; 14(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36433119

RESUMO

The turn to hydrogen as an energy source is a fundamentally important task facing the global energetics, aviation and automotive industries. This step would reduce the negative man-made impact on the environment on the one hand, and provide previously inaccessible power modes and increased resources for technical systems, predetermining the development of an absolutely new life cycle for important areas of technology, on the other. The most important aspect in this case is the development of next-generation technologies for hydrogen industry waste management that will definitely reduce the negative impact of technology on the environment. We consider the approaches and methods related to new technologies in the area of hydrogen storage (HS), which requires the use of specialized equipment equipped with efficient and controlled temperature control systems, as well as the involvement of innovative materials that allow HS in solid form. Technologies for controlling hydrogen production and storage systems are of great importance, and can be implemented using neural networks, making it possible to significantly improve all technological stages according to the criteria of energy efficiency reliability, safety, and eco-friendliness. The recent advantages in these directions are also reviewed.

18.
Polymers (Basel) ; 14(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36236061

RESUMO

For the first time, by atomic force microscopy (AFM) methods, micro- and nanofragments of micronized powder elastomeric modifier (PEM) formed at the short-term (3 min at 160 °C) interaction of PEM with hot bitumen have been demonstrated. It is the technology of high-temperature shear-induced grinding of a worn-out tire's crumb rubber or its co-grinding with styrene-butadiene-styrene (SBS) block copolymer which provides the creation of the PEM structure inclined to rapid degradation in hot bitumen. The formation just after the preparation process of a new structure of a modified binder, more resistant to external effects, is supported by the data of rheological tests. Performance tests for a modified binder using Superpave standard adopted by the road industry for bituminous binders showed an extended temperature range, resistance to rutting, and low-temperature and fatigue cracking. The better resistance to low-temperature and fatigue cracking is certainly related to energy absorption and crack growth stopping in the presence of micron and submicron resilient PEM fragments in accordance with the mechanism of increasing impact toughness in plastics.

19.
Polymers (Basel) ; 14(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36080670

RESUMO

Natural degradation (ND) is currently one of the main directions of polymer research [...].

20.
Polymers (Basel) ; 14(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36080702

RESUMO

Structural features of crumb rubber (CR) particles obtained by grinding on rollers and ultra-disperse powder elastomeric modifiers (PEM) obtained by high-temperature shear-induced grinding (HTSG) of CR or co-grinding with butadiene styrene thermoplastic elastomer (SBS) have been studied by electron and optical microscopy methods. Samples of modified bitumen were obtained at different mixing times (1-40 min) in a wide temperature range (120-180 °C). The products of interaction of PEM with hot bitumen precipitated on filters when washed with solvent from modified bitumen (MB) were studied by scanning electron microscopy (SEM). The self-similarity PEM particles and PEM breakdown fragments in bitumen up to the size of 100-200 nm were noted. The rapid (for 1 min) decomposition of PEM particles into fragments is shown, which is due to the specific structure formed as a result of HTSG. It has been suggested that this fragmentation may be caused by bitumen penetrating deep into the porous particle and breaking it, due to differently directed swelling pressure and precede the classical swelling associated with the penetration of solvent between rubber macromolecules, or occur concurrently with it.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...